Nonlinear estimation of missing ΔLSF parameters by a mixture of Dirichlet distributions
نویسندگان
چکیده
In packet networks, a reliable scheme to handle packet loss during speech transmission is of great importance. As a common representation of the linear predictive coding (LPC) model, the line spectral frequency (LSF) parameters are widely used in speech quantization and transmission. In this paper, we propose a novel scheme to estimate the missing values occurring during LPC model transmission. In order to exploit the boundary and ordering properties of the LSF parameters, we utilize the ∆LSF representation and apply the Dirichlet mixture model (DMM) to capture the correlations among the elements in the ∆LSF vector. With the conditional distribution of the missing part given the received part, an optimal nonlinear minimum mean square error estimator for the missing values is proposed. Compared to the previously presented Gaussian mixture model based method, the proposed DMM based nonlinear estimator shows a convincing improvement.
منابع مشابه
Modelling speech line spectral frequencies with dirichlet mixture models
In this paper, we model the underlying probability density function (PDF) of the speech line spectral frequencies (LSF) parameters with a Dirichlet mixture model (DMM). The LSF parameters have two special features: 1) the LSF parameters have a bounded range; 2) the LSF parameters are in an increasing order. By transforming the LSF parameters to the ΔLSF parameters, the DMM can be used to model ...
متن کاملStatistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation
Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...
متن کاملA Family of Skew-Slash Distributions and Estimation of its Parameters via an EM Algorithm
Abstract. In this paper, a family of skew-slash distributions is defined and investigated. We define the new family by the scale mixture of a skew-elliptically distributed random variable with the power of a uniform random variable. This family of distributions contains slash-elliptical and skew-slash distributions. We obtain the moments and some distributional properties of the new family of d...
متن کاملMultiple Imputation of Missing or Faulty Values Under Linear Constraints
Many statistical agencies, survey organizations, and research centers collect data that su↵er from item nonresponse and erroneous or inconsistent values. These data may be required to satisfy linear constraints, e.g., bounds on individual variables and inequalities for ratios or sums of variables. Often these constraints are designed to identify faulty values, which then are blanked and imputed...
متن کاملThe Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کامل